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Definitions: 


Here, a combination listing is defined to be:  a sequence of a 

constant (yet, finite), number of ordered positions (or, 

place-holders); each being optionally occupied by an element. 

The combination listing can be displayed by an algorithm as a 

horizontal n-tuple of elements (refer to the column labeled as 

(6,3)_pull in table 2).


This listing pertains to a n-tuple of symbols on a two dimensional 

display medium.  Whose spatial arrangement is linear (usually: 

horizontal or vertical).


(Here after, a combination listing is simply referred to as a 

combination.  Note:  the standard definition of combination is 

given in the appendix.)


More specifically, a combination refers to a unique positioning of 

elements within the ordered sequence of positions. Extra 

combination(s) are not created by swapping places among elements; 

the elements are considered to be indistinguishable.  A complete 

combinatorial array, refers to all possible distinct combinations, 

that can be formed from, a fixed number of place-holders, containing 

a fixed number of elements. 


A complete combinitorial array can further be described by the 

ordering of the combinations within the array.  A label can be

assigned to a given permutation (of combinations), of the complete 

combinitorial array.  Refer to table 2.  Consider a complete 

combinitorial array where each combination has 3 elements that 

can be placed at 6 possible locations.  One such permutation of 

combinations is labeled (6,3)_pull.  Another, permutation of 

these combinations is labeled (6,3)_push.  Table 2, also illustrates 

(7,5)_pull, a complete combinitorial array whose combinations all

have 5 elements that can be placed at 7 possible locations.

In general, the two types of prescribed orderings are called: 

(q,r)_push, and (q,r)_pull.


Note 1:  q = number of positions, a positive integer >= 1

         r = number of elements,  a positive integer <= q


Properties:


An element can only occupy one position, (at a given time in a 

combination). Here, elements are considered to be identical or 

indistinguishable to each other.  The number of elements does 

not change, it can be set to the number of positions, or less 

by some integer constant, but not fewer than zero element(s).

Only, the position of the element(s) can change, (from one 

combination to the next). 


Consider one end of the combination as having the most significant 

position. When moving to the opposite end, the locations become 

less significant.  (The opposite end has the least significant 

position.)  The algorithm starts with a combination that has all 

of it's elements contiguously least significantly positioned, (call 




this right-justified).  A combination whose elements are all 

contiguously located in the most significant positions, is called 

left-justified.  (The algorithm ends with this combination.)


The following algorithm lists a combinitorial array, beginning 

with a right-justified combination and ending with a left-justified 

combination.  


The current combination refers to the combination being formed or 

listed during a given stage in the algorithm, from the right-justified 

combination to the left-justified combination. 


Discussed (below), are two algorithms that generate the same 

type of complete combinitorial array, namely: (q,r)_pull. 

One algorthm uses a traditional procedural approach.  The other 

a more 'functional' style employs a data driven approach.


                 An algorithm for listing (q,r)_pull.

                        (procedural version)


 

i)    Start with a right-justified array.

      Initialize a counter, LIMIT=1


ii a) Append the current combination to the combination array. 

      Increment the counter LIMIT=LIMIT+1

      Check is LIMIT < (q,r)

      If so, continue to ii b).  Otherwise, stop.


ii b) Refer to the least significant element of the current combination.


iii)  If this element has a more significant element immediately 

      preceding it, then refer to this preceding element.


iv)   Repeat  iii), until you refer to the element that has an 

      empty place-holder immediately preceding it.  


iv a) If an empty place-holder is encountered:  Move this element 

      to that place-holder. If an element is moved leftward, (to 

      the next significant place-holder); right-justify any elements 

      less significant than the element just moved leftward.  

      (Moving an element leftward and right-justifying any less 

      significant elements counts as one combination.  Go to ii a).


iv b) If no empty place-holder is encountered:  Check to see if

      all of the elements are left-justified.  (This occurs when none 

      of the elements has vacant position preceding it.)  If all

      of the elements are left-justified, stop.  Otherwise, go 

      to  ii b).


                 An algorithm for listing (q,r)_pull.

                        (data driven version)

                          


The algorithm in general:


Generate a (q x r) array, called a place value array, (abreviated as PVA).  Whose 

generalised format is as follows:




TABLE 0:


(q-1,r)   (q-2,r)    (q-3,r)    ...  (r,r)        0         -1        ...         -1

    -1    (q-2,r-1)  (q-3,r-1)  ...  (r-1,r-1)    0         -1        ...         -1

    -1     -1        (q-3,r-2)  ...  (r-2,r-2)    0         -1        ...         -1 

   ...

   ...

   ...

    -1     -1         -1        ...             (3,1)      (2,1)      (1,1)        0 


(Array entries marked  -1, indicate not useable element positions.)


Create a counter running from 0 to (q,r)-1.  Partition a given 

instance of this this count, by using the largest positive values 

from each row of the (q x r) array. The columnar indices of these 

values mark the locations of the elements in the combination. In 

this way a positive integer ranging from zero to (q,r) can be 

associated with each combination obtained from q items chosen from

a set of r items.


Each element will have some value depending not only on it's 

position, but also depending on it's significance: That is, 

(whether it is the leading element (most significant element); 

some element between other elements; or the element that trails 

the other elements (least significant element). 


In general, the top row of the PVA determines the place values 

for the most significant element.  The bottom row of the PVA, 

determines the place values for the least significant element.  

The n'th row, from the top, holds the possible place values for 

the n'th significant element. 


More specifically, (for example), the second most significant element 

could have the values of: (q-2,r-1), (q-3,r-1), ...,  1, 0; during 

the instances, when it occupies the places indexed by: 

q-1, q-2, ..., 2, respectively. (Refer to the second row from the 

top in the generalized format for the PVA (table 0).)  


For values for other elements, refer to the row labeled by that 

element.


A, -1 in a given row of the PVA, signifies a location that can not 

be held by the element associated with that row.


An example of the algorithm: 


Using, q=6, r=3.    (refer to Note 1, and (6,3)_pull of table 2) 

                     

A (6 x 3) place value array for (6,3)_pull is derived from the 

(q x r) generalized format (shown in table 0): 


Table 1: 


      10 4 1 0 . .   <--  (5,3) (4,3) (3,3)   0     -1   -1 

       . 6 3 1 0 .   <--    -1  (4,2) (3,2) (2,2)   0    -1 

       . . 3 2 1 0   <--    -1    -1  (3,1) (2,1) (1,1)   0 


index: 6 5 4 3 2 1   <-- columnar location indices, of the combination


Refer to the second row from the top in the place value array shown 




in table 1.  Since, any possible position indices for one element 

are determined  by only one given row of the place value array.  

The second most significant element could have the values 

of: 6 3 1 0; at the places indexed by: 5 4 3 2, respectively. 


Since, (6,3) = 20  combinations, (form the complete combination 

array);  create a counter running from 0 to (q,r)-1 = (6,3)-1 = 19.


However, this example shows how to list or generate one combination. 

The other combinations, can be obtained in the similar manner to 

what is described below:


To generate the combination associated with, say the integer 18, 

proceed as follows:


Scan the top row of the place value array (table 1), find the largest 

value that is less than 18, this being 10.  The columnar index 

of 10 is 6.   Thus, 6 gives the position of the most significant 

element in the combination.


Scan for the next lower row of the place value array, find the largest 

value that is less than (18 - 10), this being 6.  The columnar index 

of 6 is 5.  Thus 5 gives the position of the next significant element 

in the combination. 


Scan the bottom row of the place value array, find the largest value 

that is less than (18 - 10 - 6), this being 2.  The columnar index of 2 

is 3.  Thus, 3 gives the position of the least significant element 

in the combination.


The combination associated with the integer 18, has the positions of

6, 5, 3; for the indices of the elements.  Placing elements at the 

place-holders dictated by the indices 6, 5, 3; forms the result:


                         1 1 _ 1 _ _ . 


In table 2, the combination in the (q,r)_pull column, that shares 

the same row with the integer 18; is identical to the result above, 

just achieved by using the data driven version. 


The complete combinitorial array as listed in table 2, under the

column labeled (6,3)_pull was generated by the algorithm using the 

procedural version.  The algorithm using the data driven version 

can be used to generate all of (6,3)_pull, (producing identical 

output to the algorithm using the procedural version). 

More generally, other integers associated with combinations of 

(q,r)_pull can be generated by using this data driven version.  

(By using a (q x r) place value array for the data.)


           NUMERAL SYSTEM USING AN ARRAY OF PERMUTATIONS


Definitions: 


Here, a permutation listing is defined to be:  a sequence of a 

constant (yet, finite), number of ordered positions (or, 

place-holders); each being occupied by a disparate element. 

The permutation listing can be displayed by an algorithm as a 

horizontal n-tuple of elements (refer to the column labeled as 

4!_cascade in table 2).




This listing pertains to a n-tuple of symbols on a two dimensional 

display medium.  Whose spatial arrangement is linear (usually: 

horizontal or vertical).


(Here after, a permutation listing is simply referred to as a 

permutation.  Note:  the standard definition of permutation is 

given in the appendix.)


More specifically, a permutation refers to a unique positioning 

of elements within the ordered sequence of positions.  A complete 

permutation array refers to all possible distinct permutations, 

that can be formed from, a given fixed number of number of 

elements.  A label can be assigned to a given permutation (of 

permutations), that is a complete permutation array.  Consider a 

complete permutation array where each permutation has 4 elements.  

Such permutation of permutations is labeled as:  4!_cascade.  

(Refer to table 2.) 


In general, the algorithm described here, generates an array of 

permutations called n!_cascade.  


Note 1:  n refers to the number of elements each permutation has.


A minres class is a partitioning of the set of whole numbers. 

   Let  W = { 0, 1, 2, 3, ...}.

   Let m be an element of M, where m is a multiple of n, such 

   that  M = { n, 2n, 3n, ...}.


   Let R be the absolute value of the mimimum of the representatives 

   of the residue classes of modulo n,  R = { 0, 1, 2, 3, ..., (n-1) },

   where r is an element of R. 

   

   A given minres class is formed by adding a particular m to 

   each element of R.    Such that, a given minres class is:   

               { m+0, m+1, m+2, m+3, ..., m+n-1 }

   The set of whole numbers is partitioned as follows:

   {{0,1,2,...,n-1}, {n,n+1,n+2,...,2n-1}, {2n,2n+1,2n+2,...3n-1},...}


   For example, the minres classes of modulo 4:

                {{0,1,2,3}, {4,5,6,7}, {8,9,10,11}, ...}


Properties:


An element can only occupy one position, (at a given time in a 

permutation).  The number of elements (length of the permutation), 

does not change, for each permutation, of a complete permutation 

array.  The same set of disparate elements are used for each 

permutation.  Only, the position of the elements can change, 

from one permutation to the next. 


Consider one end of the permutation as having the most significant 

position. When moving to the opposite end, the locations become 

less significant.  The opposite end has the least significant 

position.


A unique rank is associated with each element.  Thus, elements can

be sorted and listed in a permutation.  The lowest ranking element

can be placed in in the most significant position.  The next lowest 

element can be placed in the next significant position.  This is 

repeated until the highest element is put in the least significant 

position.  (This is the ordering of the initial permutation that 




the algorithm generates.)  The last permutation has the ordering 

of it's elements reversed.


The current permutation refers to the permutation being formed or 

listed during a given stage in the algorithm


             An algorithm for listing an n!_cascade.


In general:


Create a counter running from 0 to (n!-1), that designates the 

numeral being described.  So that, a positive integer ranging 

from zero to (n!-1) can be associated with each permutation (of 

size n), of a complete permutation array.


The current permutation is derived from a given instance of this 

this count (called, the permutation count).  The current 

permutation is labeled CPRN, the current permutation count is

labeled CPC.


Let USED refer to a used element array (the array containing 

the elements so far derived in forming the current permutation).

Initialize the used element array (initially, as being empty).


Designate REF as the reference list, an (ordered n-tuple), of 

all of the elements of the permutation, (sorted by rank).  The 

indices of ref range from 0 to n-1.  Where, the most significant 

element has an index of 0, the next significant element

has an index of 1.  The index of successively lesser significant 

elements have indices correspondingly incremented by one.  Up to 

until, the least significant element, whose index is n-1.  REF 

is a constant. 

 

Assign integer i, to designate the i'th significant element. 

Where, i=1, refers to the most significant element. Continue 

to i=n,  this refers to the least significant element.


Let V be the value of the element in the current permutation at 

position i.


Let Q be the 'minres class'element, that refers to a particular 

element of the permutation.  Alternatively stated, Q the index 

pointer, (points to the next element to use), from the sorted 

list of available elements.  However, using such a sorted list 

of availble elements requires pruning any used element, and moving 

any elements (that followed), forward --to fill the place left 

behind by the used element.  


Less work can be done by using the following approach: 

Use the reference array REF (a constant), and the used element 

array USED, and a counter called OFFSET.  As elements are used 

they are appended to USED.  Here, ( Q + OFFSET ) points to the 

next element to use, from REF.

  

The OFFSET is calculated as follows: 

Every time a new element is obtained; successively compare the 

new element with elements in the used element array. Each time 

an element of a equal or higher rank is encountered, increment 

an offset counter.  Append the new element to the used element 

array.  Add the offset count to the quotient of the integer 

division.  The result is used to index the reference array in 




obtaining the next element.  (The offset count is just referred 

to as the OFFSET.)


Note 2:   DIV refers to integer division

          MOD refers to the remainder from integer division


K is the quotient of DIV and MOD.  Whose  dividend determines 

the minres class that forms a bijection with an element 

of the reference list REF.  The remainder of K MOD (n-i)! is 

used to calculate the next K. 


FLG is an array of flags.  FLG is the same size as REF.  When a 

flag of FLG is set the corresponding element in REF is marked 

as used.


The algorithm begins as follows:

    REF = [a,b,c, ... , n]    where, n is the size of the permutation

    append REF to CPRN

 

repeat while CPC <= (n! - 1):

    K = CPC,  USED = [],  OFFSET = 0,  i = 1,  V = '', Q = 0

    FLG = [0,0,0, ... , 0]    the same size as REF


    repeat while i <= (n-1):

        Q =  K DIV (n-i)!

        P =  Q + OFFSET

        V =  REF(P) 

        FLG(P) = 1

        calculate next K,

        K =  K MOD (n-(i+1))!

        calculate next offset:  

           compare REF(Q) with elements of USED 

           the OFFSET is the number of elements 

           of USED being <= REF(Q)


        append V to USED

        i = i+1

end of loop, invarients: i=0 to (n-1), USED[] to USED[V0,...,V(n-1)].


when i = n:

Scan flag array FLG for the location of the remaining flag, 

that is still set as unused.  (The corresponding position in 

REF holds the remaining element.)


repeat for j=0 to j==(n-1):

    if FLG[j] <> 0 then append REF[j] to USED

    j = j+1

end of loop, invarients: j=0 to (n-1), USED[0,...,n-1] to USED[0,...,n].


CPC = CPC - 1

append USED to CPRN

end of loop, invarients: CPC=0 to (n-1), CPRN[0] to CPRN[(n-1)!].  

end of algorithm.


Example:  Refer to the column labeled 4!_cascade of table 2.


  Here, n=4                the number of elements in a permutation

  then, n! = 4! = 24       the number of permutations in 4!_cascade


To generate the permution associated with, say the integer 17.  

Proceed as follows: 




Initially:

    K = 17

    USED = []

    OFFSET = 0

    i = 1

    REF  =  [a,b c,d]      The indices of REF range from 0 to n-1 = 3.

    indices: 0,1,2,3       Where, the most significant element has an 

                           index of 0, the least significant element

                           has an index of 3.  REF is a constant.

                           (REF[0] = a, REF[1] = b, etc.) 


Obtaining most significant element:

  Q = K DIV (n-i)!         obtain 'minres class' element

    = 17 DIV (4-1)!

    = 2

  V = REF( Q + OFFSET ) 

    = REF( 2 + 0 ) 

    = REF(2)               index of most significant element

    = 'c'


  append V to USED,        USED = [c]

  FLG(2) = 1               toggle corresponding flag as used

  calculate next K,

  K = K MOD (n-i)!

    = 17 MOD (4-1)!            (remainder, of second minres class)

    = 5                      


Obtaining next most significant element:

  i = i+1

    = 2

  Q = K DIV (n-i)! 

    = 5 DIV (4-2)! 

    = 2

calculate next offset, 

  REF(Q) = REF(2) = 'c'

  comparing 'c' with elements of USED =[c]

  the OFFSET is the number of elements of USED that are <= 'c'

  OFFSET = 1

 

  V = REF( Q + OFFSET ) 

    = REF( 2 + 1 )

    = 'd'


append V to USED,          USED = [c,d]

FLG[3] = REF[3]

calculate next K,

  K =  K MOD (n-i)!

    =  5 MOD 2!            remainder

    =  1                      


Obtaining next most significant element:

  i = i+1

    = 3 

  Q = K DIV (n-i)! 

    = 1 DIV (4-3)! 

    = 1

calculate next offset, 

  REF(Q) = REF(1) = 'b'

  comparing 'b' with elements of USED =[c,d]

  the OFFSET is the number of elements of USED that are <= 'b'




  OFFSET = 0

 

  V = REF( Q + OFFSET ) 

    = REF( 1 + 0 )

    = 'b'


append V to USED,          USED = [c,d,b]

FLG[1] = 1

calculate next K,

  K =  K MOD (4-3)!

    =  1 MOD 1!        

    =  1                   remainder       


Obtaining least significant element ~O(n):


  i = i+1

    = 4 


Since, i=n, only one element remains.


Scan flag array FLG for the location of the remaining flag, 

that is still set as unused.  (The corresponding position in 

REF holds the remaining element.)


repeat for j=0 to j==(n-1):

    if FLG[j] <> 0 then append REF[j] to USED

    j = j+1

end of loop, invarients: j=0 to (n-1), USED[0,...,n-1] to USED[0,...,n].


Here, FLG[0] <> 0, then REF[0] being 'a' is appended to USED.


Alternate approach ~O(n^2);


Comparing:  USED=[c,d,b] with REF=[a,b,c,d], shows that 'a' is the 

remaining element.  Append 'a' to USED thus,  USED = [c,d,b,a]. 

                           

Listing each element in the order it was obtained from USED gives 

the permutation:


                           cdba 


This checks with the permution listed in table 2, under the column 

labeled permutation cascade, in the same row as the integer 17.


In table 2, the permutation in the n!_cascade column, that shares 

the same row with the integer 17; is identical to the result above, 

just achieved by using the data driven version. 


The complete permutation array as listed in table 2, under the

column labeled 4!_cascade was generated by the algorithm using the 

procedural version.  The above algorithm (using the data driven 

version), can be used to generate all of 4!_cascade, (producing 

identical output as the algorithm using the procedural version). 


Similarly, other integers associated with permutations of 

n!_cascade can be generated by using this data driven version.  




                                     0 1 1 0 1 0


A permutation (can be written as a sequence of integers), for

example:

                                     0 3 4 1 2 


The permutation compliment would be written by correspondingly

writing down the n's compliment of each element. (Where, n is

the value of the largest element in the permutation.)  The 

permutation compliment, of the previous example, would be written

down by obtaining the 4's compliment of each corresponding element,

namely:


                                     4 1 0 3 2


Note:  the existence of a bijection between (n,q)_push and (n,q)_pull.


Note:  the existence of a bijection between n-bit binary numerals and

       (n,p)_pull, (or (n,p)_push),  where p={0,1,2,...,n}.  Moreover, 

       a numeral system can be formed from a composite of combination 

       cascades of a given length.


For example, using combination cascades in "composition", say, (n,p)_pull 

where p={0,1,2,3,...,5}.


binary   (5,0)_push   binary   (5,1)_push   binary   (5,2)_push   binary   (5,3)_push   binary   (5,4)_push   
binary   (5,5)_push

00000     - - - - -   00001     - - - - |   00110     - - - | |   10000     - - | | |   11010     - | | | |   
11111     | | | | |

                      00010     - - - | -   00111     - - | - |   10001     - | - | |   11011     | - | | |

                      00011     - - | - -   01000     - | - - |   10010     | - - | |   11100     | | - | |  

                      00100     - | - - -   01001     | - - - |   10011     - | | - |   11101     | | | - |              

                      00101     | - - - -   01010     - - | | -   10100     | - | - |   11110     | | | | -

                                            01011     - | - | -   10101     | | - - |

                                            01100     | - - | -   10110     - | | | -

                                            01101     - | | - -   10111     | - | | -

                                            01110     | - | - -   11000     | | - | -

                                            01111     | | - - -   11001     | | - - -


Observe that by substituting the symbols:  - |, for 0 1; and then

re-ordering the (5,p)_push combinations to monotonically increase

according to binary numeral convention, you obtain the full 5 bit 

consecutive binary integer sequence (with no repeating or missing

integers):  00000, 00001, ..., 11111.


From this you can derive:  (2**n) -1 =  sigma (c(n,p))  where p={0,1,...,n}


Each numeral system has it's own advantages and disadvantages.  It 




is taken for granted that the Hindu-Arabic system is more convenient 

for many uses from: multiplication to algebraic operations.  However, 

other systems may have advantages for limited applications.  Roman 

numerals have an advantage for problems involving partitioning a 

number in to it's components, (that add up to the number being 

partitioned).  Especially, for components involving multiples of 

tens, fives, and ones.  For example, partitioning xxviii into 

multiples of tens, fives, and ones; results in: two tens, one five, 

and three ones.  Combinatorial, numeral systems can be incorporated 

in writing more compact algorithms that create combinatorial lists. 

The same applies to the permutational number system.


Note: For permutations of length 2 to 21 a base ten representation 

is shorter in length than the permutation representing an integer.  

For permutations of length 22 to 24 a base ten representation is the 

same length as the permutation representing the integer.  However, 

for permutations whose length is greater than 25, a base ten 

representation is longer in length.


Also Note:  A base ten digit uses up a certain amount of bits 

depending on the hardware or encoding (ASCII, EBDIC, unicode, etc.).

So does the symbol used in the permutation. These must be taken into 

account when determining overall usage space. 


For combinations:  say, (900,450), the length of a combination 

n-tuple is 900, and the base ten representation is 270 digits in 

length.  (This being near the upper limits of machine calculation, 

using recursive algorithms.)  Without recursion (10000,5000), a 

10000 element long combination n-tuple, can represent up to a 

3009 (base ten) digit number.  These combinatorial numeral systems 

are not as compact in their notation as base ten notation.  However, 

these combinatorial numeral systems approach the compactness of base 

two notation.


Aside:  Another way of looking at a combination n-tuple, is by 

conceptualizing the way that empty place-holders (symbolized by _) 

move, as shown by successive combination n-tuples (associated with 

numbers from zero to 19 in the table above).  The _ place-holders 

start by all being left justified.  They then move rightward 

(in-between the letters. The place-holders continue moving past the 

letters;  until, all of the place-holders are right justified. 


                SYMMETRY ASSOCIATED WITHIN ARRAYS:

               (q,r)pull, (q,r)push AND n!_cascade


To observe symmetry in these arrays: list the n-tuples in these

arrays in a top to bottom arrangement; list the elements of each 

n-tuple in a left to right direction. 


Consider the order of the n-tuples, and the order of each element 

in the top half of the array.  To obtain the bottom half of the array:

Reverse the order of the n-tuples of top half of the array. Then, 

reverse the order of the elements in each n-tuple. 


In some of these arrays; the inverted bottom half of the array 

'mirrors' a given type of compliment of the top half.  When q=2r, 

the one's compliment is expressed in  the inverted bottom half 




of (q,r)_pull, and (q,r)_push.  When n MOD 2 = 0, the n's 

compliment is expressed in the reversed order of the bottom half 

of n!_cascade.  This property can be used to reduce the number of 

iterations in algorithms that generate these types of arrays.


example: (6,3)_pull    (writing the combination using 0's and 1's )


        top half of      bottom half of 

        (6,3)_pull        (6,3)_pull    

   0   0 0 0 1 1 1   10   1 0 0 0 1 1   19   1 1 1 0 0 0     0 0 0 1 1 1 

   1   0 0 1 0 1 1   11   1 0 0 1 0 1   18   1 1 0 1 0 0     0 0 1 0 1 1 

   2   0 0 1 1 0 1   12   1 0 0 1 1 0   17   1 1 0 0 1 0     0 0 1 1 0 1 

   3   0 0 1 1 1 0   13   1 0 1 0 0 1   16   1 1 0 0 0 1     0 0 1 1 1 0 

   4   0 1 0 0 1 1   14   1 0 1 0 1 0   15   1 0 1 1 0 0     0 1 0 0 1 1 

   5   0 1 0 1 0 1   15   1 0 1 1 0 0   14   1 0 1 0 1 0     0 1 0 1 0 1 

   6   0 1 0 1 1 0   16   1 1 0 0 0 1   13   1 0 1 0 0 1     0 1 0 1 1 0 

   7   0 1 1 0 0 1   17   1 1 0 0 1 0   12   1 0 0 1 1 0     0 1 1 0 0 1 

   8   0 1 1 0 1 0   18   1 1 0 1 0 0   11   1 0 0 1 0 1     0 1 1 0 1 0 

   9   0 1 1 1 0 0   19   1 1 1 0 0 0   10   1 0 0 0 1 1     0 1 1 1 0 0 

                     Compare top half   Flip or reverse     Reverse the order 

                     with the bottom    the bottom half's   of each element  

                     half.              order.              in each n-tuple,

                                                            (of the reversed 

                                                            bottom half).

                                                            Or, since  q=2r;  

                                                            1's compliment   

                                                            these elements.     

                                                            The result is       

                                                            again the top half. 


example: (6,3)_push       (using 0's as the placeholders)


        top half of      bottom half of 

        (6,3)_push        (6,3)_push    

   0    0 0 0 1 1 1  10   0 0 1 1 1 0   19   1 1 1 0 0 0    0 0 0 1 1 1 

   1    0 0 1 0 1 1  11   0 1 0 1 1 0   18   1 1 0 1 0 0    0 0 1 0 1 1 

   2    0 1 0 0 1 1  12   1 0 0 1 1 0   17   1 0 1 1 0 0    0 1 0 0 1 1 

   3    1 0 0 0 1 1  13   0 1 1 0 1 0   16   0 1 1 1 0 0    1 0 0 0 1 1 

   4    0 0 1 1 0 1  14   1 0 1 0 1 0   15   1 1 0 0 1 0    0 0 1 1 0 1 

   5    0 1 0 1 0 1  15   1 1 0 0 1 0   14   1 0 1 0 1 0    0 1 0 1 0 1 

   6    1 0 0 1 0 1  16   0 1 1 1 0 0   13   0 1 1 0 1 0    1 0 0 1 0 1 

   7    0 1 1 0 0 1  17   1 0 1 1 0 0   12   1 0 0 1 1 0    0 1 1 0 0 1 

   8    1 0 1 0 0 1  18   1 1 0 1 0 0   11   0 1 0 1 1 0    1 0 1 0 0 1 

   9    1 1 0 0 0 1  19   1 1 1 0 0 0   10   0 0 1 1 1 0    1 1 0 0 0 1 

                       Compare top half   Flip or reverse     Reverse the order 

                          with the bottom    the bottom half's   of each element  

                          half.              order.              in each n-tuple,

                                                                 (of the reversed 

                                                                 bottom half, only

	 	 	 	 	 	 	                 works for some values).

                                                                 Or, since  q=2r;  

                                                                 1's compliment   

                                                                 these elements.     

                                                                 The result is       

                                                                 again the top half. 




example: 4!_cascade (using 0 1 2 3 as the elements of the permutation)


   top half of    bottom half of 

   4!_cascade     4!_cascade      

   0    0 1 2 3      12    2 0 1 3      23    3 2 1 0            0 1 2 3 

   1    0 1 3 2      13    2 0 3 1      22    3 2 0 1            0 1 3 2 

   2    0 2 1 3      14    2 1 0 3      21    3 1 2 0            0 2 1 3 

   3    0 2 3 1      15    2 1 3 0      20    3 1 0 2            0 2 3 1 

   4    0 3 1 2      16    2 3 0 1      19    3 0 2 1            0 3 1 2 

   5    0 3 2 1      17    2 3 1 0      18    3 0 1 2            0 3 2 1 

   6    1 0 2 3      18    3 0 1 2      17    2 3 1 0            1 0 2 3 

   7    1 0 3 2      19    3 0 2 1      16    2 3 0 1            1 0 3 2 

   8    1 2 0 3      20    3 1 0 2      15    2 1 3 0            1 2 0 3 

   9    1 2 3 0      21    3 1 2 0      14    2 1 0 3            1 2 3 0 

  10    1 3 0 2      22    3 2 0 1      13    2 0 3 1            1 3 0 2 

  11    1 3 2 0      23    3 2 1 0      12    2 0 1 3            1 3 2 0 

                 Compare top half   Flip or reverse     Reverse the order 

                 to bottom half.    the bottom half's   of each element  

                                    order.              in each n-tuple,

                                                        (of the reversed     

                                                        bottom half).

                                                        Or, since 4 MOD 2 =0;  

                                                        4's compliment   

                                                        these elements.     

                                                        The result is       

                                                        again the top half.


                          


                         RECURSIVE SELF-SYMMETRY 

                             (in n!_cascade)


The elements after the most significant element of an n!_cascade, 

constitute an array of (n-1)!_cascades.  There are n of these 

(n-1)!_cascades.  Recursively, the elements after the most significant 

element of an (n-1)!_cascade, constitute an array of (n-1)!_cascades.

There are n(n-1) of these (n-1)!_cascades.  Recursion, can be repeated 

until 2!_cascades are reached.  


example:




4!_cascade                 3!_cascades                  2!_cascades

   abcd       a bcd            bcd            b cd          cd

   abdc       a bdc            bdc            b dc          dc

   acbd       a cbd            cbd                             

   acdb       a cdb            cdb            c bd          bd

   adbc       a dbc            dbc            c db          db

   adcb       a dcb            dcb                             

   bacd                                       d bc          bc

   badc       b acd            acd            d cb          cb 

   bcad       b adc            adc                             

   bcda       b cad            cad            a cd          cd 

   bdac       b cda            cda            a dc          dc

   bdca       b dac            dac                             

   cabd       b dca            dca            c ad          ad

   cadb                                       c da          da

   cbad       c abd            abd                          

   cbda       c adb            adb            d ac          ac 

   cdab       c bad            bad            d ca          ca 

   cdba       c bda            bda                             

   dabc       c dab            dab            a bd          bd 

   dacb       c dba            dba            a db          db

   dbac                                                        

   dbca       d abc            abc            b ad          ad

   dcab       d acb            acb            b da          da

   dcba       d bac            bac                             

              d bca            bca            d ab          ab

              d cab            cab            d ba          ba

              d cba            cba                           

                    partitioning              a bc          bc

                    off 3!_cascades           a cb          cb

                    from 4!_cascade                                

                                              b ac          ac

                                              b ca          ca

                                                               

                                              c ab          ab 

                                              c ba          ba

                                                  partitioning  

                                                  off 2!_cascades

                                                  from 3!_cascades



